NASA/TM-2004-212999

Formal Modeling and Analysis of a Preliminary
Small Aircraft Transportation System (SATS)
Concept

Victor A. Carreno
Langley Research Center, Hampton, Virginia

Hanne Gottliebsen
National Institute of Aerospace, Hampton, Virginia

Ricky Butler
Langley Research Center, Hampton, Virginia

Sara Kalvala
University of Warwick, United Kingdom

March 2004

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

e Access the NASA STI Program Home Page at
http://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

e Fax your question to the NASA STI Help Desk
at (301) 621-0134

e Phone the NASA STI Help Desk at
(301) 621-0390

e Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2004-212999

Formal Modeling and Analysis of a Preliminary
Small Aircraft Transportation System (SATS)
Concept

Victor A. Carreno
Langley Research Center, Hampton, Virginia

Hanne Gottliebsen
National Institute of Aerospace, Hampton, Virginia

Ricky Butler
Langley Research Center, Hampton, Virginia

Sara Kalvala
University of Warwick, United Kingdom

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

March 2004

Acknowledgment

The authors would like to thank Sheila Conway, Ken Jones, Maria Consiglio, Dan
Williams, Cathy Adams, Gary Milsaps and other members of the SATS team for
discussions regarding landing procedures, ATC practice, performance requirements and
many other characteristics of the National Air Space. Their help was invaluable in
formulating the model and parameters of the preliminary concept of operation. We want
to especially thank Ken Jones for his leadership of the High Volume Operations Team
and his recognition of the need for formal methods on this project.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

Contents
1 Introduction
2 System Description

3 Model of Self Controlled Area

3.1 Model of the T approach
3.2 Division of the SCA
3.3 Predicates On Points

3.4 Determining the Correct Arrival Fix

4 Model of Aircraft Trajectory

4.1 Before time_atiaf(ac)
4.2 Between time_at_iaf(ac) and time to.if(ac) L.
4.3 After time_toif(ac)

4.4 Calculation of dist_gone(ac)(t)
5 AMM Requirements Model

6 Safety Property

6.1 Timing Predicates.
6.2 Excluding Special Cases
6.3 Safe Separation
7 Proof Concepts

7.1 Status of Verification
7.2 Proof of safety RR_LL

721 Cased

722 Cased
7.3 Proof of bothon.T
7.4 Proof of safety Rala.
7.5 Proof of safety M_T

8 Conclusion

A Vectors Library

Al 2D Vectors.
A.2 Positions in 2D space
A3 2D Lines
A.4 Intersecting Lines
A5 Closest Approach

12

14
14
15
16

17
17
19
21
23
23
27
28

30

1 Introduction

The Small Aircraft Transportation System (SATS) program aims to provide an efficient
transportation alternative to commercial air and ground transportation through general avi-
ation. The overall goals are to increase mobility, reduce door-to-door travel times, and
provide air transportation to under-served markets at an affordable cost. To accomplish
these goals, the SATS program is developing concepts of operations and enabling technolo-
gies. One of the concepts of operation being developed as part of the SATS program is
entitled “Higher Volume Operations (HVO) at non-tower, non-radar airports during Instru-
ment Meteorological Conditions (IMC)”.

Current operations at non-tower, non-radar airports during IMC rely on procedural sep-
aration based on a method of one-in/one-out. This method results in a significant reduction
in airport capacity. The SATS HVO concept will enable multiple operations to non-tower,
non-radar airports during IMC. It is imperative that this concept be developed in a rigorous
manner to insure that safety is not compromised. This requires that the concept undergo
an extensive evaluation by both simulation and analytical methods.

In this paper, we demonstrate how the key safety properties can be established by a
mathematical verification method based on formal logic and theorem proving. The system
is represented in a formal mathematical language and the required properties are formulated
as conjectures. A mathematical proof is constructed to show that these conjectures are
indeed mathematical theorems and consequently that the modeled system has the required
properties.

A preliminary concept of operation was developed prior to the completion of the first
draft of the official concept of operations. This was done to give us a head start on the
development of a rigorous mathematical analysis method that can be used to verify the final
concept of operations in 2004. The models and proofs presented in this paper concern only
this preliminary concept and not the latest SATS HVO concept documented in the summer
of 2003. This preliminary concept has enabled us to develop a viable verification method
and create a significant amount of reusable libraries, theories, and automated strategies that
will be useful for the verification of the final concept of operation and other systems similar
to this one.

The preliminary concept is described in the next section and in more details in [2]. Three
basic elements of the system are modeled using the PVS formal mathematical language: (1)
the airspace surrounding the airport, called the Self Controlled Area (SCA), (2) a ground
based automated system called the Airport Management Module (AMM), (3) the aircraft
trajectories. The safety requirement is formulated as a geometric separation property. From
the models and the safety requirement, proofs are developed that support the safety claim.

2 System Description

The objective of this concept of operation is to provide an automated service which will
guarantee separation assurance for aircraft operating in the airport airspace. The system
must be implementable with minimal infrastructure (i.e. low cost) and should be verifiable
to a high confidence level. The system consists of four primary functional parts: (1) the

Self Controlled Area (SCA), (2) the Airport Management Module (AMM), (3) on-board
navigation tools, and (4) data communication. Only the first three parts of the system are
modeled in this paper. The data communication is assumed to be available and error free.
In future verification efforts, the communication part of the system, including errors, may
be considered.

The Self Controlled Area (SCA) is a cylinder surrounding the airport facility. The ap-
proach procedure is based on a GPS “T” approach as described in [1]. Figure 1 is a top
view of the T configuration. Aircraft approaching from the straight-in region are expected

STRAIGHT-IN AREA

intermediate segment

FAF
RIGHT BASE AREA T LEFT BASE AREA
final segment

MAP
(Missed Approach Point)
Runway

Missed Approach
Holding Fix

Figure 1: Basic T Design for GPS Standard Instrument Approach

to proceed directly to the Intermediate Fix (IF). Aircraft approaching from the base right
or base left are expected to proceed directly to Initial Arrival Fix (IAF) right or left, respec-
tively!. Aircraft entering the SCA accept responsibility for separation. That is, air traffic
control services are not provided inside the SCA.

The Airport Management Module (AMM) is a centralized automated system which com-
municates via data link with aircraft around the airport. The AMM will typically reside on
the airport grounds. The AMM serves as an arbiter and sequencer. It receives requests from

!The right and left regions are labeled with respect to the pilots view on final approach.

aircraft to enter the SCA and grants or denies access. Grant or denial of access is based on
a time-separation criteria. When an aircraft requests entry into the SCA, the AMM checks
that the requesting aircraft will be time separated, at designated points, with all other air-
craft already given access?. To implement the time-separation scheme in a way that does not
overly constrain the airspace, but achieves a simplified access criteria, the SCA was divided
into 6 regions. Figure 2 shows the access regions. Aircraft in the same or adjacent regions

straight-in area

SCA Boundary

Region R
(Region 1)

Region L
(Region 6)

right base area |eft base area

RT (runway threshold)

runway

L —o

Lo

Entry Not Permited

inthiszone \‘/

Figure 2: SCA Regions for AMM Entry Criteria

must be time separated at the following designated points:
e The SCA boundary
e The IAF (Initial Arrival Fix) or Virtual IAF

e The IF (Intermediate Fix)

2To insure time separation at all of these points it is necessary for the AMM to have knowledge of the
nominal speed profiles of different types of aircraft and their trajectories. This means that the AMM must
have a database of aircraft types and their associated descent speeds as a function of distance from the
runway. The details of how the AMM performs these calculations are not included in the model. The
nominal trajectories are determined by the concept itself and are included in our model.

e The FAF (Final Arrival Fix)
e The RT (Runway Threshold)

Aircraft in non adjacent regions must be time separated at the following designated
points:

e The IF (Intermediate Fix)
e The FAF (Final Arrival Fix)
e The RT (Runway Threshold)

When the AMM grants access to an aircraft, it broadcasts to the aircraft an Estimated Time
of Arrival (ETA). The ETAs correspond to the following designated points: SCA boundary,
IAF, IF, FAF, and RT. The ETAs are based on the expected trajectory, the type of the
aircraft, and the nominal speed profile of the aircraft. It is assumed that suitably-equipped
SATS aircraft will have on-board navigation tools that generate heading and speed advisories
(vectoring) to enable the pilot to fly the expected trajectory and meet the ETAs.

The objective of this concept is to enable a guarantee that all aircraft inside the SCA will
remain separated as long as the pilots fly in accordance with the instructions given by this
system. To establish that this guarantee is valid, we must show, for all possible times and
all allowed aircraft trajectories that geometric separation is maintained. This verification
is accomplished using a formal mathematical method, which is described in the following
sections. The guarantee is elaborated as a top level safety property as follows:

Theorem 1 (Safety_Top)

AMM _properties?(acy, acs) A
tm_in SCA?(t,ac;) A
tm_in_ SCA?(t,aco) A
not_in_no_enter_zone?(acy, acy)

D

— —
safely_separated?(ac_loc(ac;)(¢), ac_loc(acy)(t))

This theorem will be explained in detail in the next sections, but informally this theorem
states that if the AMM protocol properties are satisfied, both aircraft are within the SCA
airspace, and both of their entry points are not within the no entry zone at the base of the T,

— —
then the trajectories of both aircraft ac_loc(ac;)(t) and ac_loc(ac,)(t) are safely separateds.

The predicate safely_separated? expresses the fundamental property that two points in
space are sufficiently separated:

safely_separated? (7, ps) =
dist(p7, P2) > sep-min V

— —
(on_close_corner?(py,pa) A dist(py, ifix) + dist(pa, ifix) > sep_min)

3We will be using the notation ac to represent the initial state record and ac to represent the location of
the aircraft in the initial state.

where p; and p> are points in a two-dimensional vector space. The dist function is defined
as follows:

dist(7,3) = \/ (5. —)° + (7, — G,)?

When two aircraft are on the T and one of them is on a base leg and the other is on
final approach, linear path separation can be used rather than geometric separation. A more
detailed description of on_close_corner? will be given in section 3.3. The constant sep_min is
nominally 3 nautical miles.

3 Model of Self Controlled Area

The Self Controlled Area (SCA) is defined as a circle of radius SCA_radius nominally set at
12 nautical miles, as can be seen in figure 2.

3.1 Model of the T approach

The approach to the runway follows a standard T approach. The T i is defined by five fixes:
Runway Threshold (rt) Final Approach Fix (faf) Intermediate Fix (|f|x) Left Initial Arrival
Fix (|af L), and Right Initial Arrival Fix (|31c R), each of which are points in 2D space, but
exact coordinates are not specified, _Fxcept for the f;f which is the origin of the coordinate

system (0,0). For all fixes but the faf, minimal constraints are given axiomatically, defining
the relative locations of the fixes:

— —
iaf_L, = ifix, A

— —
iaf R, = —iaf_L, A

— —
iaf_R, = ifix, A

— —
laf_L, + ifix, < SCA_radius

H
From this we see, that the T is assumed symmetric, that is the two initial arrival fixes (iaf L

— —
and iaf_R) are at equal distances from the intermediate fix (ifix). The last property ensures
that virtual initial fixes as mentioned below are within the SCA.

The following additional properties are derived from the type constraints of the fixes:

—

- -
rt, =0A rty, <O0A rt, > —-SCA_radius A

— — —

ifix, = 0 A ifix, >0 A ifix, < SCA_radius A

— — — —
iaf_L; > 0 A iaf_L, < SCA_radius A iaf_L, =ifix,

This orients the T in the coordlnate system, so that the rt is dlrectly below the faf and the

initial arrival fixes (|af L and iaf_ R) are exactly level with the ifix.

5

The following distances are defined for convenience:
— —
iaf2if = dist(ifix, iaf_L)
- —
if2faf = dist(faf, ifix)
-
faf2rt = dist(rt, faf)
d_iaf = iaf2if + if2faf + faf2rt

The distance d_iaf is the distance measured along the T from an initial arrival fix to the
runway threshold.

3.2 Division of the SCA

The airspace is decomposed into disjoint regions, as seen in figure 2:

—

— — .
pr = fafy, A fafy,<py, A p, <ifix,

Il

final 17(p)
final 27 ()

. T - L o
regionR?(p) = (P <0 A P, <ifixy) V (Fo =0 A p, <rt,) V (7, <iaf R, A pj, =ifix,)
— — —
regionL?(p) = (P >0 A p, <ifix,) V (P >iaf L, A p, = ifix,)
H
regionM?(p) = p, > ifix,
— — —
baselegR?(p) = iaf R, < p, A py < ifix, A py, = ifix,
— — —
baselegL?(p) = ifix, < Py A pp <iaf L, A py, = ifix,
(
(

— — —
pr = faf, A rty<p, A p, <faf,
- —
runway?(p) = p, =faf, A rt,=p,
The first three regions divide up the space outside the T based on which initial arrival fix
would be used for aircraft in that position. Thus an aircraft in region R would fly to the

— —
iaf_R. Region M is the area with y-coordinates higher than that of ifix, that is the area above
the T in figure 2, region M is also called the straight-in area. Each of these three regions
extend into the airspace outside the SCA. The last five regions together make up the T. The

H
baselegs (initial segments in figure 1) are the paths between the initial arrival fixes (iaf_R and
— — — —
iaf_L) and the ifix. Then between the ifix and the faf is the first part of the final approach

(final 1), and from f;f to rt is the second part (final 2). Finally, the runway is given as a
single point.

To further facilitate our algorithm, we divide region M into 4 sub-regions: Regions two
through five:

— —
region2?(p) = p, > ifix, AP, <0 A p,— ifix, < —p,
— —
region3?(p) = py > ifix, Apy <0 A py— ifix, > —p,
— —
regiond?(p) = p, > ifix, APy >0 A p,— ifix, > p,
— —
region5?(p) = p, > ifix, Apy >0 A p,— ifix, < p,

6

Each of these regions cover a 45° slice of region M. The dividing lines are assigned as follows:
The dividing line between regions 2 and 3 belongs to region 2, the dividing line between
regions 3 and 4 belongs to region 3 and the dividing line between regions 4 and 5 belongs to
region 5.

3.3 Predicates On Points

It is convenient to be able to express whether a point is within a certain group of regions.
This is easily accomplished by defining some additional predicates as conjunctions of the

basic regions.
First we have predicates on_baseleg? and on_final?, each of which combines two of the

regions defined above. on_T? then combines these two new predicates.

on_baseleg?(p) = baselegR?(p) V baseleglL?(p)
onfinal?(p) = final_1?7(p) V final 27(p) V runway?(p)
on_T?(p) = on_baseleg?(p) V on_final?(p)

Given two points in the SCA, we can determine if they are on different (opposite) baselegs:

opposite_baselegs?(py, 72) = (baselegR?(p1) A baselegl?(p3)) V
(baselegl?(p1) A baselegR?(ph))

The minimal separation safety criteria is relaxed a little when both aircraft are on the T
in that the separation may be along the T. In some cases this is the same as the geometrical
distance, however in the instance where one aircraft is on a baseleg and the other is on final,
the distance along the flight path is shorter than the geometrical distance. Thus it is useful
to be able to distinguish this situation, for which we define a predicate on_close_corner?:

on_close_corner?(py,p2) = (on_baseleg?(p;) A on_final?(p:)) V
(on_baseleg?(p2) A on_final?(5))

The timing comparisons for aircraft are dependent on whether the aircraft are in the
same region, in adjacent regions or in non-adjacent regions.

same_region?(py, Pa) =

—

(regionR?(p1) A regionR?(py)) VvV (regionL?(py) A regionl?(ps)) V
(region2?(py1) A region2?(py)) vV (region3?(p1) A region3?(p;)) V
(regiond?(py) A regiond?(py)) vV (region57(py) A region5?(p5))
adjacent_region?(p, po) =
(regionR?(p1) A region2?(p)) vV (regionR?(p) A region2?(p1)) V
(regionL?(py) A region5?(ps)) vV (regionL?(p,) A region5?(py)) V
(region2?(py) A region3?(py)) vV (region2?(ps) A region3?(5;)) V
(region3?(p1) A regiond?(pz)) V. (region3?(p,) A regiond?(py)) V
(regiond?(p1) A region5?(pz)) vV (regiond?(py) A region5?(p}))

It is worth noting that although regions L. and R are adjacent in a geometrical sense, they
are not defined as adjacent in this formalization, since aircraft in regions R and L fly toward

— —
two different IAFs (iaf_R and iaf_L).

3.4 Determining the Correct Arrival Fix

Based on the position of an aircraft outside the SCA, the appropriate initial arrival fix is
_)
uniquely determined. If an aircraft is in region R (region L), the initial arrival fix is iaf_R

— —
(iaf L), however if the aircraft is in region M, it heads directly to the ifix. Nevertheless it is
useful to define virtual initial fixes for aircraft entering through region M:

.,
— iaf L o
viriaf (57) = 7 + (1 — — 22) (ifix —))
dist (5, ifix)

where p; is an initial point in region M.
Thus, given a position in the SCA (or indeed in the airspace outside) one can compute
the fix that the aircraft proceeds toward as follows:

which iaf (g, : init_point) = IF regionR?(5}) THEN iaf R
ELSIF regionL?(p;) THEN ia?_)L
ELSE viriaf (%)
ENDIF

Although we use the virtual initial arrival fixes for aircraft entering through region M, we
—
also often just assume that they go straight to the ifix. However, since the virtual initial

H
arrival fixes are on the straight line between the entry point for the aircraft and the ifix, this
does not change our assumptions on the flight path.

4 Model of Aircraft Trajectory

Fundamental to the specification of the SATS system is the delineation of the trajectories
‘)

of aircraft in the SATS airspace. These trajectories are modeled using a function ac_loc of
time:

ac_loc(at)(t) =

LET ¢, = time_at_iaf(ac),
— — N
wh_fix = which_iaf(ac),
tent = entry_time(ac) IN
— — -

IF ¢ < tisr THEN ac +(t — tent) * vel_from_spd(ac, wh_fix, ac.gs)
ELSIF ¢ > time_to_rt(ac) THEN (rt,, rt,)
ELSE

IF ¢ > time_to_if(ac) THEN

— —
(ifixg, ifix, — dist_gone(ac)(t) — iaf2if)
ELSIF regionR?(ac) V regionL?(ac) THEN
— — —
IF wh_fix =iaf_ R THEN loc_on_legR(dist_gone(ac)(t))

.
ELSE loc_on_legl (dist_gone(ac)(t))

ENDIF
ELSE
—_dist_gone(ac)(t) , = .
wh _fix + T (ifix —wh_fix)
ENDIF

ENDIF

where ac is the initial location of the aircraft when it enters the SATS airspace. This function
decomposes the calculation of the position of the aircraft based upon time. The key times

are

time_at_iaf(ac): time aircraft arrives at the initial approach fix

time_to_if (ac):
time_to_rt(ac):

. . T
= entry_time(ac) + dist(ac, which_iaf(ac))/ac.gs
time aircraft arrives at the initial fix
time aircraft arrives at the runway threshold

The time that an aircraft enters the SATS airspace is represented by an uninterpreted func-

tion, entry_time(ac).

4.1 Before time_at_iaf(ac)

Prior to time_at_iaf(a

c), the aircraft travels at a constant velocity. It was convenient to define

the aircraft trajectory using a line in 2D space. The traditional way to define a line in 2D
space is by specifying two distinct points, py and pi, on it. But a line can also be defined by
a point and a direction vector. Furthermore, we can also add dynamics to our line using an

initial point py and a velocity vector ¢ as follows:
po + 17

which designates the location of a moving particle at time t. Thus if ac is the position of
the aircraft when it enters the SATS airspace, it position up to the IAF can be calculated
as follows:

— - -
ac +(t — tent) * vel_from_spd(ac, wh_fix, ac.gs)

— —
where ey is the entry time and veI_from_spd(a_E, wh _fix, ac.gs) is the constant velocity of the
vehicle. Note that this velocity vector is computed from the initial point, the final point and
the speed as follows:

vel_from_spd(p1, 72, s) = |IF p1 = py THEN zero
s
ELSE ————— (P> — P
dist(ﬁl,ﬁg) (p2 pl)
ENDIF

4.2 Between time_at_iaf(ac) and time_to_if(ac)

Once the aircraft reaches an TAF or a virtual IAF it begins to decrease its speed in accor-
dance with a speed profile that is a function of remaining distance to the runway threshold.
Therefore a function dist_gone(ac)(t) is needed to compute the relative distance. Details are
provided in section 4.4. The position on the T at time‘t) depends upon which of the two IAFs

or virtual IAF's the aircraft passed through. The ac_loc function first tests to see whether
the aircraft is currently at an TAF (i.e. entered from region R or region L) or a virtual TAF.
If it is at an IAF then the position is calculated as follows:

— — —
IF wh_fix =iaf_ R THEN loc_on_legR(dist_gone(ac)(t))

ﬂ
ELSE loc_on_legl (dist_gone(ac)(t))
ENDIF

where the subfunctions are defined as follows:
— — —
loc_on_legR(!) = IF I < iaf2if THEN (iaf R, + I, iaf_R,)

— —
ELSE (ifixy, ifix, —(I — iaf2if))
ENDIF

— — —
loc_on_legL(l) = IF I < iaf2if THEN (iaf L, — [, iafR))

— —
ELSE (ifix,, ifix, —(I — iaf2if))
ENDIF

10

If the aircraft entered the SCA through region M and has already passed through the virtual
IAF, the position is calculated as follows:

dist_gone(ac)(t) .>

h_fi ifix —wh_fi
wh _fix + —oif (ifix —wh _fix)

4.3 After time_to_if(ac)

If the time is after time_to_rt(ac) then the function returns the location of the runway thresh-
old (rt;, rt,). Otherwise, the aircraft is on the final approach. The calculated location is:

(if;;, n‘::y — dist_gone(ac)(t) — iaf2if)
4.4 Calculation of dist_gone(ac)(?)

The speed of the aircraft after it reaches an IAF or a virtual IAF is defined by a speed profile
determined by its aircraft type. This speed profile is a function of remaining distance to the
runway threshold. For example, the speed profile for the Cessna 172 is:

speed_profile_c172(d,) = IF d, <1 THEN 90 + 25(d, — 1)
ELSIF d, <5 THEN 90

ELSIF d, <7 THEN 120+

ELSE 120
ENDIF

(120 — 90) -7

Since this function is continuous, we can define a time-to-point function as the integral, with
respect to distance, of one over the speed profile, plus an absolute time constant A;:

1

dl + A
speed_profile(ac, d_iaf — 1) + A

tm2pt(ac)(l) = /0

where A; is the time at which the aircraft crosses the IAF, [is defined as the distance traveled
after crossing the TAF, d_iaf is the path distance from the IAF to the runway threshold,
and the argument ac in the speed profile function supplies the type of aircraft. Therefore,
tm2pt(ac)(0) = time_at_iaf(acnv). Note that d_iaf — is the remaining distance to the runway
threshold.

Since the speed profile is continuous and positive, the function tm2pt is continuous and
increasing, so we can define an inverse function as follows:

t = tm2pt(ac)(l) & dist_gone(ac)(t) =1

It is important to keep in mind that dist_gone returns the relative distance traveled from the
IAF but takes as an argument absolute time.

11

Lemma 1 (derivative_relation)

_d tm2pt(acy)(!) S d tm2pt(acs)(l)

derivative_relation : LEMMA (VI : ¥ > ¥) V
I dtm2p6tl§ac2)(l) > dtm2p6tl§ac1)(l)) 1)

Proof. This is established for all combinations of aircraft speed profiles by a case split on
each of the speed profile functions. This is a key property that we rely on the establish
separation on the T.

0

5 AMM Requirements Model

In this section, the requirements for the Aircraft Management Module (AMM) are described.
These requirements basically define an abstract time separation protocol, which do not
specify any of the details of an implementation. They are intrinsic to the concept itself or
are a product of the formal proof process (i.e. they were added in order to complete a proof).
Properties that were needed in order to establish the separation lemmas were collected under
a predicate named AMM _properties? defined as follows:

AMM _properties?(ac;, ace) = AMM_PP2?(acy,acy) A
time_sep_prop A
entry_time(acg) > entry_time(ac;) A
iaf_L_gt_sep_-min A

init_sep_prop(acy, acs)

We will discuss each of these conjuncts in the order that they appear. First the predicate
AMM _PP27 is the abstract representation of the AMM timing protocol and defined as follows:

AMM_PP2?(acy, acy) = time_separation_at_rt?(acy,acs) A
time_separation_at_faf?(acy,acy) A
time_separation_at_if?(acy,acy) A
(((same_region?(ac;, ac,)

V adjacent_region?(acy, acs)))
IMPLIES
time_separation_at_iaf?(acy, acy) A

time_separation_at_entry?(acy, acy))

The first three constructs specify that there is time separation at the runway threshold (rt),
the final approach fix (faf) , and the initial fix (if). The next implication states that if the
two aircraft are in the same region or in adjacent regions, then there are two additional

12

timing constraints, namely, that there is time separation at the IAFs and at the point of
entry. The time_separation predicates are defined as follows:

time_separation_at_entry?(acy, acy) = entry_time(acy) — entry_time(ac;) > time_sep
time_separation _at_iaf?(ac;, acy) = tm2pt(acs)(0) — tm2pt(acy)(0) > time_sep
time_separation_at_if?(ac;, acy) = tm2pt(acy)(iaf2if) — tm2pt(acy)(iaf2if) > time_sep

time_separation_at_faf?(acy, acy) = tm2pt(acy)(iaf2if + if2faf) —
tm2pt(acy) (iaf2if + if2faf) > time_sep

time_separation_at_rt?(ac;, acy) = tm2pt(acy)(d-iaf) — tm2pt(ac;)(d-iaf) > time_sep

The AMM implementation will have to perform many calculations involving airport ge-
ometry, aircraft trajectories and speed profiles, and other external factors such as wind,
communications delay, and pilot error in order to calculate time delays that will meet these
requirements. It is important that the refinement of these AMM requirements into exe-
cutable code be carried out in a rigourous manner and formally verified as well as the overall
system concept. It is also important that the AMM code be implemented on a fault-tolerant
computing platform, because the reliability requirements will be very high. This was not
attempted in this effort, but will necessarily be a part of our future efforts on the evolving
SATS concept of operation.

The second conjunct in the predicate AMM _properties? is time_sep_prop which is defined
as follows:

time_sep_prop = time_sep * min_speed > sep_min

This constraint essentially defines time_sep in terms of the the minimum geometric separation
(sep_min) and the speed of the slowest possible aircraft (min_speed). The third conjunct in
the predicate AMM _properties? is just a naming convention establishing that the first aircraft
to enter the SATS airspace is labeled as 1 and the second is labeled 2:

entry_time(acg) > entry_time(ac;)
The fourth conjunct in the predicate AMM _properties? is iaf_L_gt_sep_min defined as follows:
iaf _L_gt sep_min = iaf_L, > sep_min

This is a restriction on size of sep_min compared to the width of the T (or vice versa). Finally,
the fifth conjunct in the predicate AMM _properties? is init_sep_prop which is defined as:

init_sep_prop(acy, acy) =
. - =
same_region?(acy,acy) D

. e e S .
Z * min_speed > dist(acy, [AF') — dist(acy, [AF')) + sep_min

13

where Z = entry_time(acy) — entry_time(ac;) and IZF is the common initial approach fix.
This last conjunct was added to facilitate a proof. It adds an additional restriction to the
timing protocol. Simulation runs with this additional restriction shows that the performance
penalty in terms of airport operational capacity is very small. This conjunct requires that
the AMM determine the distances to the IAF when the two aircraft are in the same region.

6 Safety Property

In the introduction, we stated that the top level theorem (1) is:

AMM _properties?(acy,acs) A
tm_in_SCA?(¢,acy) A
tm_in_.SCA?(¢,acy) A

: - =
not_in_no_enter_zone?(acy, acy)
D

— —
safely_separated?(ac_loc(ac;)(t), ac_loc(acs)(t))

AMM _properties?(acy, ace) was explained in the previous section, tm_in_SCA?(¢, ac) is a predi-
cate use to ensure that the aircraft is inside the SCA, and not_in_no_enter_zone? is a predicate
which excludes entry near the base of the T. In figure 2 this zone is designated by the phrase
“Entry Not Permitted in this zone”. In this section we will describe each of the predicates
tm_in_SCA?, not_in_no_enter_zone? and safely_separated?.

6.1 Timing Predicates
The predicate tm_in_SCA? is defined by:

tm_in_SCA?(t,ac) = tm_bef_T?(¢,ac) vV tm_on_T?(¢,ac)

and determines if an aircraft is within the SCA at time .
The predicates tm_bef_T? and tm_on_T? are defined as follows:

tm_bef T?(t,ac) = IF regionM?(ac) THEN ¢ > entry_time(ac) A t < tm2pt(ac)(iaf2if)
ELSE ¢t > entry_time(ac) A ¢ < tm2pt(ac)(0)
ENDIF

tm_on_T?(t,ac) = IF regionM?(ac) THEN ¢ > tm2pt(ac)(iaf2if) A ¢ < tm2pt(ac)(d_iaf)
ELSE ¢ > tm2pt(ac)(0) A ¢ < tm2pt(ac)(d_iaf)
ENDIF

The first predicate, tm_bef T?(t, ac), determines if at time ¢ the aircraft ac is in the SCA and

ﬁ
it has not yet acquired the T. Since aircraft entering through region M go straight to the ifix,
they do not acquire the T until the time given by tm2pt(ac)(iaf2if). Likewise, tm_on_T?(¢, ac)
determines if an aircraft has acquired the T.

14

Some further timing predicates are useful, distinguishing between the different stages of
flight:

tm_on_baseleg?(t,ac) = -regionM?(ac) A t > tm2pt(ac)(0) A ¢ < tm2pt(ac)(iaf2if)

tm_on_final?(t,ac) = (¢ > tm2pt(ac)(iaf2if) A ¢ < tm2pt(ac)(d.iaf))

The predicate tm_on_baseleg?(t,ac) determines whether an aircraft that entered through
regions R or L is on a baseleg at time £. Since an aircraft that enters through region M does
not travel along the baselegs of the T, they are excluded here. The predicate tm_on_final?
determines if an aircraft is on final at time ¢, this is independent of the entry region.

Figure 3 shows how the various predicates are true for different stages of flight, depending
on whether the aircraft is entering through regions R or L or through region M.

- e & ¢ & @
SCA border IAF (R/L/virtual) IF FAF RT
Entry through RegionsR or L:

‘ tm_bef_T?(ac) ‘ tm_on_T?ac)
| : tm_on_baseleg?(ac)
I |

Entry through Region M ' tm_bef T?(ac) ‘ tm_on_T?(ac)
[[|

Independent of entry region: | tm_on_final(ac) |

| tm_in_SCA?(ac) |

Figure 3: Timing predicates compared to stage of flight

6.2 Excluding Special Cases

Due to the construction of the protocol, there is a narrow wedge of airspace surrounding the
border between regions L and R (around z = 0) in which separation is somewhat harder to
establish. We call this the no enter zone:

not_in_no_enter_zone?(ac;,ac;) = RL_case?(acy,acs) O
one_outside_of sepmin?(acy, acs) V
one_outside_of_sepmin?(acy, ac;) V
both_outside_of_sepmin_div2?(a—El, a_éz)

It should be noted here that this wedge is really rather small. This also splits regions R and
L into Ra/Rx and La/Lx with Rx and Lx denoting the right and left no enter zone.

The predicate RL_case? determines if ac; and ac, are entering through regions R and L
with one of the aircraft entering through each region:

RL_case?(ac;,ac,) = (regionR?(ac;) A regionL?(acs)) V

(regionR?(acy) A regionlL?(ac;))

15

The predicate one_outside_of_sepmin? is not symmetrical in the two arguments, which is why
it is applied twice in not_in_no_enter_zone?. The first argument (here ac;) must have the
absolute value of the x value of its entry point greater than or equal to sep_min:

one_outside_of_sepmin?(acy,ac;) = (regionR?(ac;) A regionl?(acs) A aci,< —sep_min)
vV (regionL?(ac;) A regionR?(acs) A aci,> sep_min)

Finally, if both aircraft have the absolute values of the x values of their entry points greater
than or equal to ™" min the predicate both_outside_of_sepmin_div2? holds:

both_outside_of_sepmin_div2?(acy,ac;) = (regionR?(ac;) A regionl?(acs) A
a_()Im < —sep_min/2 A
acy, > sep_min/2)
vV (regionL?(ac;) A regionR?(acs) A
a_<>:2z < —sep_min/2 A

acy, > sep_min/2)

Thus, if one of a_él or a_(>:2 is in region R, and the other in region L, then the top level
theorem only considers those situations where either aircraft has an entry point with |z| >
sep_min, or both aircraft have entry points with |z| > M

6.3 Safe Separation

Our overall aim is to show that for any two aircraft within the SCA, those two aircraft
maintain the minimum required separation at all times. The predicate safely_separated?
states exactly that:

safely_separated?(pi, pa) = dist(py, p2) > sep-min V
(on_close_corner? (P, pa) A

— —
dist (), ifix) + dist(py, ifix) > sep_min)

We see that safely_separated? is expressed in terms of the location of the aircraft given as

points in 2D space. These are calculated using acj:)c(a_z:)(t), which is described more fully
in section 4. In general, we require a simple geometrical separation, that is the distance
between the two aircraft must be greater than or equal to sep_min nautical miles. However,
if the two aircraft are already on the T, and the first one is on final approach and the other
one is on a baseleg, it is enough to have sep_min distance as measured along the T, as is
discussed in section 2.

So the main theorem says that if two aircraft are both in the SCA, the AMM _properties
hold for the two aircraft, and they are not in the no enter zone, then separation as defined
above is ensured.

16

7 Proof Concepts

7.1 Status of Verification

In section 6 we discussed the top-level safety property Theorem 1. In this section we will
give an overview and status over the proof of this theorem.

The AMM protocol uses the various entry regions as well as timings to determine if access
should be granted, and this is reflected in the proof, where we consider pairs of aircraft based
on their entry regions and/or which stage of flight they are at. For example, the lemma

Lemma 2 (safety_ RR_LL)

AMM _PP27?(acy,ace) A time_sep_prop A
. - =

same_region?(acy, acy) A

(regionR?(ac;) V regionL?(ac;)) A

init_sep_prop(acy, aca) A

tm_bef_T?(t,ac;) A tm_bef_T?(¢,acy)

— —
D safely_separated?(ac_loc(acy)(t), ac_loc(acs)(t))

express that if two aircraft both enter through region R, with the time separations required by
the protocol and both fly straight from their entry point to the fix, then spacial separation

is maintained as long as both aircraft are in region R. Once the first aircraft reaches the
—

iaf R, it acquires the T, and another lemma is used to handle this case. Since the proof is
symmetrical in the case where both aircraft enter through region L, the lemma safety RR_LL
is stated so that it covers both these cases.

The proof of Theorem 1 takes the form of a large case split. The following tables indicates
the different cases together with the names of the lemmas covering that case. The tables also
shows the proof status for each lemma, P indicates that the proof of the lemma is complete,
U indicates that it is not.

First, the proof of Theorem 1 contains the the cases listed in Table 1. This shows that
for the cases regarding regions R and L exclusively the proofs are completed, whereas for
the cases covering region M and the mixed cases of regions R and L, and region M are not
yet proven.

Furthermore, the proof of the lemma safety_both_on_T is based on the case splits in
Table 2. We see that all the cases where both aircraft are already on the T have complete
proofs.

Finally, the proof of lemma Safety_mixed_T is based on the case splits listed in Table 3.
Here we see that the mixed cases where one aircraft is on the T and the other one is not yet
on the T have not been proven.

In the next sections we will discuss in some more detail some of the cases, namely
safety RR_LL (section 7.2), safety_both_on_T (section 7.3) and safety_Rala (section 7.4). In
section 7.5 we present some observations about one case involving one aircraft on the T and
the other off of the T. Some minor modifications to the models will be necessary to handle
this case.

17

| Name of lemma | Case(s) covered | Status |

safety_ RR_LL ac; and ac, are both in region R or both in P
region L

safety R1IL_L1IR ac, is in region R with x value of entry point less P
than or equal to sep_min and a_éz is in region L
— Or symmetric with a_c):l in region L and a_<):2 in
region R

safety RL1_LR1 Similar to safety_ R1L_L1R, but with entry point P
of a_<>:2 restricted instead of a_<):1

safety_Ral a ac, is in region R and acy is in region L, both P
with absolute value of x value of entry point
greater than or equal to Sep%

safety_M _same_or_adjacent a_<>:1 and a_Eg are in the same or adjacent parts of U
region M

safety_M _non_adjacent a_():l and a_<>:2 are both in region M, but in non- U
adjacent parts

safety_M_RL a_(>:1 is in region M, a_<>:2 in either region R or U
region L

safety RL_.M ac, is in region R or region L, ac, in region M U

safety_both_on_T a%l and a%Q are both on the T P

Safety_mixed_T One aircraft has reached T, the other has not U

Table 1: Cases in the proof of Theorem 1
| Name of lemma | Case(s) covered | Status |

base_and_final i:l is on final and a_EQ is on a baseleg P

on_close_corner a_él and a_éz are on a corner, as described in sec- P
tion 3.3

both_on_T final ac; and ac, are both on final P

both_on_T _same a_():l and a_EQ are on the same baseleg P

both_on_T _not_same a_<>:1 and a_Eg are on opposite baselegs P

Table 2: Cases in the proof of lemma safety_both_on_T

18

| Name of lemma | Case(s) covered | Status |

safety_ T_M a?:l is on the T, a_ég is in region M U
safety M_T a_él is in region M, a_ég is on the T U
safety_T_RL ac; is on the T, ac, is in region R or region L U
safety RL_T a_él is in region R or region L, a_(>:2 is on the T U

Table 3: Cases in the proof of lemma Safety_mixed_T

7.2 Proof of safety RR_LL

In this section, we will present the basic idea behind the proof of the case where both aircraft
are in region R or region L. This is illustrated in figure 4. Since in this case the aircraft have

Aircraft 2 enters
Z time units after
aircraft 1 and travels
distance d, at speed s,
as authorized by AMM

Aircraft 1
travels distance
d,at speed s;

Figure 4: Approach Paths for Case RR

H
not reached the T, the speeds are constant and the ac_loc function simplifies to the motion

of a particle on a straight line. In fact, it is possible to reason about distances in a triangle
rather than about points moving in 2D space as illustrated in figure 5. The parameters used
in the figure are defined as follows:

19

\
\ Z = time delay
=d, - + " imposed by AMM
a(t)=d;-s,(Z+1) . on second aircraft
\\\ sep_min = 3 nm
b('l’) = dz = 52 1’ e

c2(t) = a3(t) + b3(t) - 2a(t)b(t) cos ¢
s, = speed aircraft 1

l Theorem: c(t) >= sep_min I s, = speed aircraft 2

Figure 5: Abstraction To Distances in a Triangle

t clock time, ¢t = 0 when second aircraft enters SATS airspace
Z time delay between when first aircraft enters SATS airspace and
when second aircraft enters.

sep_-min separation minimum. Two aircraft should never get closer than this
distance (e.g. 3 miles).

S1 constant speed of the first aircraft

S constant speed of the first aircraft

dy starting distance of first aircraft from the IAF (initial approach fix)

do starting distance of second aircraft from the IAF (initial approach
fix)

We switch to a local time t which is set to 0 when the second aircraft enters the airspace.
Since aircraft 1 enters the SATS airspace Z seconds before the second aircraft, the following
equations define their remaining distances to the IAF. a(t) is the remaining distance for
aircraft 1 and b(t) is the remaining distance for aircraft 2:

a(t) = di—s1(Z+1)
b(t) = dg — 8215

Using the Law Of Cosines, the distance between the two aircraft at time t can be computed
as follows:

A(t) = a*(t) + b*(t) — 2a(t)b(t)cosd

where ¢ is the angle at the TAF.
To establish geometric separation, we must show:

20

THEOREM: IF 0 <t < ‘Si—i — Z THEN c¢(t) > sep_min
We remember that 22 > y? <= x > y for non-negative x,y, so let’s look at c?(t):

c(t) = a*(t) + b*(t) — 2a(t)b(t)cosd
> a®(t) + b (t) — 2a(t)b(t)
= (a(t) = b(t))’

Thus, if we can establish

c(t) > la(t) —b(t)] > sep_min

we are done.
We can simplify the formulas for a(t) and b(¢) by using the following substitutions:

K = dl—dg—le

p = S2—3581
Then
la(t) = b(t)] = [di = s1(Z + 1) = (d2 — 521)]
= ‘dl — dg — 812 —+ (82 - Sl)t)‘
= [K+pt|

Thus, if we can establish
|K + pt| > sep_min

we are done. We can decompose this proof by a simple case analysis:

‘ H81<82‘$1282‘
di <d, || Case 1 | Case 3
diy > dy || Case 1 | Case 4

We will illustrate the proof of case 3 and case 4.

7.2.1 Case 3

Proof. From the case 3 premises, we have:

d1§d2 A 81282 A K:dl—dg—le A P =82 — 81 A
AMM_PP(dy, do, $1, S2, Z)

The premise AMM_PP is defined as follows
AMM_PP(dl, dQ, S1, S92, Z) =7 2 Z_min(dl, dg, S1, 82) N
dy — $o(d1/s1 — Z) > sep_min

21

It follows trivially from the top-level premise AMM _properties for this situation. The following
lemma holds:

same_region?(acy,acs) A (regionR?(ac;) V regionL?(ac;)) A
AMM _properties?(acy, acy)
IMPLIES

AMM_PP (dist (ac;, which_iaf (ac;)),
dist(acs, which_iaf (ac,)),

— — . -
acy .gs, acy .gs, entry_time(acy) — entry_time(ac;))

where a_():l .gs, a_<):2 .gs are the ground speeds of aircrafts 1 and 2 respectively.
We will prove lemma (2) in two steps:

|K| > sep_min (3)

|K + pt| > | K] (4)

and Z_min simplifies to:

Z_min(dl,d2,81,82) = IFd >dy N sy > sy THEN

(sep_min + (d; — dy))/s1
ELSE

sep_min/s;
ENDIF

= sep_min/s;

First we need to establish step 1:
|K| > sep_min
Since Z_min(dy,ds, S1, S2) = sep_min/s; and Z >= Z_min(dy, ds, $1, S2) we obtain:
$1/ > sep_min

From the assumptions we see that K < 0, so

‘K'Z—K dg—d1+81Z
51Z

>
> sep_min

22

Now all we have to do is establish step 2:
K + pt| = |K]|
But from the case 3 premises: we have p < 0 and hence pt < 0. Thus

K +pt| = —K—pt
-K
K|

v

and we are done.
O
7.2.2 Case 4
Proof. From the case 4 premises, we have:

di>dos N 81>8 AN K=di —dy—812 N p=83—51 A

AMM_PP(dy, dy, $1, S2, Z)
First we will establish that

K + pt| > |K]| (5)

To see this we note that the absolute value function achieves its minimum at zero, thus
|K + pt| is a minimum when [t = —K/p|. For values of ¢ greater than this we have the
relationship t; < to D |K + pt;| < |K + pta]. Thus, from —K/p < 0 < t we obtain
|K| < |K + pt|, the desired result. Now expanding AMM_PP(d, da, s1, S2, Z) we get

Z > (dy — dy + sep-min) /s,

after cross-multiplying we simplify and obtain 0 > —s1Z + d; — dy + sep_min. Using the
definition of K we get —K > sep_min and hence |K| > sep_min. Combining this result with
(5) finishes the proof.

a

7.3 Proof of both.on_ T

In this section, we present the basic idea of the proof of the cases where both aircraft are
currently on the T:

Lemma 3 (safety_both_on_T)

time_sep_prop A AMM_PP2?(acy, acy) A
tm_on_T(¢,ac;) A tm_on_T(¢,acy)
D

— —
safely_separated? (ac_loc(ac;)(t), ac_loc(acy)(t))

23

Proof. The proof of this lemma involves 4 cases:

1. Both aircraft on same leg of the T
2. Aircraft are on opposite legs of the T
3. One aircraft is on final and the other is on a leg

4. Both aircraft are on final.

We will illustrate the proof of the first case:

-
both_on_T_same : LEMMA LET p; = ac_loc(ac;)(?),

=
ps = ac_loc(acy)(t) IN
same_baseleg?(p1, pa) A
AMM _props?(acy,acy) A
tm_on_baseleg?(¢,ac;) A tm_on_baseleg?(¢, acy)
IMPLIES safely_separated?(p1, p5)

To establish the conclusion, it suffices to show that
dist(p1, p2) > sep-min
Since both aircraft are on the same leg, we have

dist(p1, p2) = dist_gone(acy)(t) — dist_gone(acy)(t) (6)

_),
(To see this for the case where both aircraft are on baselegR, note that p; = ac_Ioc(a_El)(t)

H
simplifies to loc_on_legR(dist_gone(ac;)(¢)) and ps = ac_loc(ac,)(t) simplifies to
loc_on_legR(dist_gone(acy)(t)). Using the definition of loc_on_legR, we have

p1z = dist_gone(acy)(t) + iaf R,

p1y, = iaf R,
Pos = dist_gone(acy)(t) + iaf R,
pay = iaf R,

from which (6) is obtained.)
By definition of dist_gone we have

t = tm2pt(acy)(l1) < dist_gone(acy)(t) =4
t = tm2pt(acy)(ly) < dist_gone(acy)(t) = Iy
Using lemma TD safety_iaf (7), we have

l; — Iy = dist_gone(ac;)(t) — dist_gone(acy)(t) > sep_min

From this both_on_T_same follows.
0

24

Lemma 4 (TD_safe_sep_iaf)

time_is_after_iaf?(acy, aco, t) A
time_sep * min_speed > sep_min A
time_separation_at_iaf?(acy, acy) A
time_separation_at_rt?(acy, ac) A
t =tm2pt(acy)(l;) A t=tm2pt(acy)(ls)

IMPLIES [, — Iy > sep_min (7)

Proof. From TD_tm_sep_everywhere
VI : tm2pt(acy)(l) > tm2pt(acy)(l) + time_sep
In particular this is true for ls:
tm2pt(acy)(l) > tm2pt(acy)(le) + time_sep
Since tm2pt(acy)(l2) = tm2pt(acy)(l;) this becomes

tm2pt(acy)(l1) — tm2pt(acy)(ly) > time_sep (8)
From definition of tm2pt (1), we get
d tm2pt(ac)(l) 1 9)
dl ~ speed_profile(ac, d_iaf — 1)

and so d/dl tm2pt(ac)(l) > 0. Hence tm2pt([) is an increasing function and so [; > l,. From
(9) we also obtain
1 1

= = d/dl tm2pt(ac)(l
min_speed — speed_profile(ac, d_iaf — 1) /dl tm2pt(ac)(l)

and thus

A 1 l
—dl > tm2pt l)dl
/12 min_speed / m2pt(ac)(l)

l2
yielding
b ly

— > tm2pt l1) — tm2pt l
min_speed min_speed m2pt(ac) (L) — tm2pt(ac)(ly)

for all ac. Applying this to ac; and using (8), we get:
l1/min_speed — Iy /min_speed > time_sep
Multiplying both sides by min_speed yields
ly — Iy > time_sep * min_speed
But from premise 2, we have
time_sep * min_speed > sep_min

and we are done.
0

25

Lemma 5 (TD_tm_sep_everywhere)

time_separation_at_iaf?(acy,ace) A time_separation_at_rt?(acy, acy)
D (VI :tm2pt(acy)(l) > tm2pt(acy)(l) + time_sep)

Proof. From lemma (1), we obtain

~d tm2pt(ac;)(l) S d tm2pt(ace)(l)

: R
Vi dl - dl 0

VI d tm2pt(acq)(l) S d tm2pt(acy)(!)

. dl - dl
Case 1: (VI : d/dl tm2pt(acy)(l) > d/dl tm2pt(acy)(l)):
Thus
d_iaf d_iaf
/ tm2pt(acy) (1) dl > / tm2pt(acs)(l) dl

! I

and hence
tm2pt(acy)(d_iaf) — tm2pt(acy)(l) > tm2pt(acy)(d_iaf) — tm2pt(acy)(l)

Rearranging:

tm2pt(acs)(l) — tm2pt(acy)(l) > tm2pt(acy)(d_iaf) — tm2pt(ac;)(d_iaf)
From definition of time_separation_at_rt?(acy, acy)
tm2pt(ace)(d_iaf) — tm2pt(ac;)(d_iaf) > time_sep

and thus we are done.
Case 2: (VI : d/dl tm2pt(acy)(l) > d/dl tm2pt(acy)(l)):

Thus
I I
/ tm2pt(acy)(l) dl 2/ tm2pt(acy)(l) dl
0 0
and hence
tm2pt(acy)(l) — tm2pt(acy)(0) > tm2pt(acy)(l) — tm2pt(acy)(0)
Rearranging

tm2pt(acy)(l) — tm2pt(acy)(l) > tm2pt(acy)(0) — tm2pt(acy)(0)
From definition of time_separation_at_iaf?(acy, acy)
tm2pt(acy)(0) — tm2pt(acy)(0) > time_sep

and thus we are done.
0

26

(10)

(11)

7.4 Proof of safety_Rala

In this section, we will present the basic idea behind the proof of the case where one of the
aircraft is in region R and the other is in region L. This is illustrated in figure 6. Since in this
case the aircraft have not reached the T, the speeds are constant and the ac function simplifies
to the motion of a particle on a straight line. In fact, it is possible to reason about distances
in a quadrilateral rather than about points moving in 2D space. Furthermore, because the
aircraft are restricted (by protocol) from entering the rectangular regions labelled RX and
LX in figure 6 the proof is quite elementary. These regions have width sep-min/2 so the

aircraft 2

Figure 6: Restricted Regions

shortest distance between any possible trajectory is greater than sep_min. However, the
proof has been formalized and checked in PVS. The key abstract lemma was:

<0 Ad;>0 A
a; <0 A b, >0 A
c, < —sep_min A d, > sep_min A
a; < —sep_min/2 A b, > sep-min/2 A
Cy = Gy N
dy > b, A
on_segment?(d, ¢, p1) A
on_segment? (b, d,)
D dist(p1, p3) > sep_min

27

The premises with the predicate on_segment? constrain locations p and p3 to be somewhere
on the line segments from @ to band b to & respectively.

Interestingly, we originally expected to be able to prove this theorem without the removal
of the restricted zones. The following informal argument was conceived as illustrated in figure
7. Since the aircraft are originally separated at their entrance times and the paths either

Figure 7: Some Erroneous Thinking

diverge or converge but never come closer together than the length of one of the legs of the
T, they must be adequately separated no matter what the relative speeds are. Unfortunately
this obviously correct “theorem” is false! What the informal reasoning overlooked is the fact
that the original separation guarantee applies when the first aircraft enters and the second
aircraft is still outside of the SATS airspace. Once the first aircraft enters, the regional
controller no longer has responsibility for separation. What we did not realize was that
there were divergent trajectories where the dynamic point of closest approach occurs after
the first aircraft enters the SATS airspace. This is illustrated in figure 8. The points labeled
A are the locations of the aircraft when aircraft 1 first enters. Here they are adequately
but minimally separated. However when the second aircraft is faster it travels further in
its trajectory than the first aircraft over a time interval. Therefore shortly after aircraft 1
enters, when they are at the positions labelled B they are closer together than when they
were at points A. Therefore separation is lost. Many vain attempts were made to prove the
separation property in the PVS theorem prover (e.g. using vector formulas for the point of
closest approach) before it was realized that the “lemma” was not true.

7.5 Proof of safety M_T

While in the process of writing up this paper, we decided to attempt the proof of another case.
Since we had not verified any cases where one aircraft was on the T and the other aircraft

28

Figure 8: Some Erroneous Thinking

was still approaching the T, we decided to attempt a proof of safety M_T, where one aircraft
is in region 4 and another one is on final approach. While attempting to prove this case, it
was discovered that this lemma was not true. In this case there is no time synchronization
enforced by the AMM on the aircraft at their virtual or real IAFs. Unfortunately time
synchronization at the IF (initial fix) and RT (runway threshold) is not sufficient to guarantee
that they are geometrically separated at all times. There are two possible resolutions:

1. Require time synchronization at the IAFs.

2. Generalize the notion of safely_separated to allow path separation in these cases as in
the close_corner situation.

If the second solution is selected, the definition of safely_separated will have to changed from

safely_separated? (5, p2) =
dist(p7, P2) > sep-min V

(on_close_corner?(p', pa) A dist(py, ifix) + dist(p5, ifix) > sep_min)
to something like

safely_separated?(p}, ps) =
dist(p7, pa) > sep-min V

— —
(one_final_one_within_iaf?(51, pa) A dist(py, ifix) + dist(i5, ifix) > sep_min)

29

The first resolution is a change to the operational concept itself, whereas the second is a
change to the safety property itself. The first resolution would impose some additional
timing constraints that would have to be enforced by the AMM and consequently could
reduce the performance. We suspect that the impact would be fairly small, but this will
have to be assessed via simulation. Alternatively, the relaxation of the safety property does
not appear to be unreasonable in that it is directly analogous to what is already done when
both aircraft are on the T. In fact in this situation the geometric separation is greater than
when both aircraft are on the T.

8 Conclusion

In this paper we have presented a formal model of a concept for sequencing aircraft into
a SATS airport without a tower, radar, or airport controller. The concept relies upon a
timing protocol implemented in software named the Aircraft Management Module (AMM).
The concept has been formally modeled using both continuous and discrete mathematics and
consists of three main pieces: (1) Model of the SATS airspace using 2-dimensional vectors, (2)
model of aircraft trajectories as functions of time that are determined by aircraft speed, which
is dependent upon the remaining distance to the runway threshold, and (3) a requirements
model of the AMM, which specifies the high-level timing properties enforced by the AMM
software.

A mathematical theorem has been formulated which states that the AMM timing protocol
will maintain adequate separation between all aircraft assuming that all aircraft follow the
instructions given by the AMM and the “rules of the road” associated with the concept. The
proof of this theorem was decomposed into ten cases of which five have been proved. The
preliminary concept modeled in this paper was developed 6 months prior to the completion
of the SATS draft 1 operational concept so that formal verification techniques and libraries
suitable for this problem domain could be developed. Hopefully, much of the this will be
reused when the final SATS operational concept is modeled and analyzed formally. In order
to move on to the final SATS operational concept, the verification was not fully completed.
We believe that the completion of 50% of the subcases is enough to demonstrate the feasibility
of this verification approach even though everything we set out to accomplish in 6 months
was not finished. However, because of the incompleteness of the proofs we do not know
whether the preliminary concept itself is safe. We have run many simulations of the concept
but we do not believe that simulation alone provides a rational basis for assuring safety. We
do believe that with sufficient effort (probably 2 to 4 man months) the remaining proofs
could be completed with at most fairly minor modifications to the AMM protocols or stated
safety properties.

References

[1] Federal Aviation Regulations/Aeronautical Information Manual. Jeppesen Sanderson Inc,
1999.

30

[2] Carreno, Victor: Concept for Multiple Operations at Non-Tower Non-Radar Airports
During Instrument Meteorological Conditions. In Proceedings of the 22nd Digital Aviation
System Conference, Indianapolis, Indiana, Oct. 2003.

31

A Vectors Library

The NASA PVS library contains three distinct vectors libraries
1. 2-dimensional vectors
2. 3-dimensional vectors
3. N-dimensional vectors

One might wonder why there should be 2D and 3D versions, when an N-dimensional version
is available. The answer is that there are some notational conveniences for doing this. For
example, in the 2D version we represent a vector as

Vector: TYPE = [# x, y: real #]

whereas in the N-dimensional library a vector is

Index : TYPE
Vector : TYPE

below(n)
[Index -> reall

where n is a formal parameter (posnat) to the theory. Thus, in the two dimensional case, the
x-component of a vector v is v’x whereas in the N-dimensional library it is v(0). Also certain
operations are greatly simplified in the 2D case. The dot product is

*(u,v): real = u‘x * vix + u‘y * vy; % dot product
in the 2-dimensional case, whereas in the N-dimensional case it is
*(u,v): real = sigma(0,n-1,LAMBDA i:u(i)*v(i)); % Dot Product

where sigma is a summation operator imported from the reals library.

In this appendix we will present the 2-dimensional version because that is what is used
in the SATS work. However, the differences in the libraries are kept to a minimum. All
operators, definitions, and lemmas are given identical names to simplify the use of these
libraries.

A.1 2D Vectors

Two names are available for a vector type are provided in the theory vectors2D.

Vector : TYPE = [# x, y: real #]
Vect2 : TYPE = Vector

The vector operators are defined as follows:

32

a : VAR real

u,v,w : VAR Vector

-(v) : Vector = (-v‘x, -v‘y);

+(u,v): Vector = (u‘x + vz, u‘y + v'y);
-(u,v): Vector = (u‘x - v'x, u‘y - v'y);
*(u,v): real = u‘x * vix + u‘y * vy;
*(a,v): Vector = (a * v‘x, a *x viy);

% dot product

A conversion is provided so that one can create 2D vectors as follows

(xv,yv)

rather than having to write

(# x

=XV, ¥y

1= yv #)

There are several functions and predicates provided such as

sqv(v) : nnreal
norm(v) : nnreal

zero_vector?(v)

nz_vector?(v)

normalized? (v)
Zero

~(nzv)

parallel?(nzu,nzv): bool = ~(nzu)*" (nzv)

orthogonal?(u,v): bool

. Zero_vector

(0,0) ;

AT
sqrt(sqv(v))
: MACRO bool = (norm(v) = 0 AND
vix = 0 AND vy = 0)
: MACRO bool = (norm(v) /= 0 AND
(vix /= 0 OR vy /= 0))
: MACRO bool = (norm(v) = 1)

: Normalized = (1/norm(nzv))*nzv

~(nzu) *~ (nzv) -1

= ux*xv=0,;

1 OR

There are several dozen lemmas available for manipulating vectors such as

add_assoc
add_move_right

: LEMMA u+(v+w) = (u+v)+w
: LEMMA u + w v IFF u

33

vV - W

add_cancel_left : LEMMA u + v = u + w IMPLIES v = w

neg_distr_sub : LEMMA -(v - uw) =u-v
dot_eq_args_ge : LEMMA uxu >= 0
dot_distr_add_right : LEMMA (v+w)*u = v¥u + wku
dot_scal_left : LEMMA (a*u)*v = ax(u*v)
dot_scal_canon : LEMMA (a*u)*(bxv) = (axb)*(uxv)
sqv_scal : LEMMA sqv(a*v) = sq(a)*sqv(v)
sqrt_sqv_norm : LEMMA sqrt(sqv(v)) = norm(v)
norm_eq_0 : LEMMA norm(v) = 0 IFF v = zero
cauchy_schwartz : LEMMA sq(u*v) <= sqv(u)*sqv(v)

A.2 Positions in 2D space

The theory positions2D enhances the vector space with constructs for specifying distances.
One frequently wants to use a vector to designate a location in 2D space. To make this more
explicit, the following type definition was added

Pos2D: TYPE = Vect2

though it is really just a synonym. Next it is useful to have a metric or distance function:

sq_dist(pl,p2: Pos2D): nnreal = sq(pl‘x - p2‘x) + sq(pl‘y - p2‘y)

dist(pl,p2: Pos2D) : nnreal = sqrt(sq_dist(pl,p2))

Many lemmas are available, including

dist_refl : LEMMA dist(p,p) = 0

dist_sym : LEMMA dist(pl,p2) = dist(p2,pl)

dist_eq_0 : LEMMA dist(pl,p2) = O IFF pl = p2

dist_norm : LEMMA dist(u,v) = norm(u-v)

sq_dist_le : LEMMA sq_dist(v1l,v2) <= sq_dist(pl,p2) IMPLIES
dist(vl,v2) <= dist(pl,p2)

dist_ge_x : LEMMA dist(pl,p2) >= abs(pl‘x - p2‘x)

dist_ge_y : LEMMA dist(pl,p2) >= abs(pl‘y - p2‘y)

dist_triangle: LEMMA sq(dist(p2,p0)) = sq(dist(pl,p0)) + sq(dist(pl,p2))
- 2% (p1-p0) *(p1-p2)

The following predicates are available:

on_circle?(p,r): bool = dist(p,zero) =r

on_line?(pl,p2,p): bool =
EXISTS (x : real) : p = pl + x *x (p2 - pl)

on_segment?(pl,p2,p): bool =
EXISTS (x : { y: nnreal | y <= 1}) : p = pl + x * (p2 - pl)

34

A.3 2D Lines

The theory lines2D provides convenient formalizations for lines in 2-dimensional space. The
traditional way to defines a line L is by specifying two distinct points, py and pi, on it. A
line L can also be defined by a point and a direction. Let py be a point on the line L and
let dv be a nonzero vector specifying the direction of the line. This is equivalent to the two
point definition, since we could just put dv = (p; — py). We can also add dynamics to our
line. If we assume a particle is moving in a line with a constant velocity, then we can define
this linear motion using the location of the point at time zero, a velocity vector and a time
parameter t¢:

P+t * vel

which provides the location of the particle at time ¢.
In the library, lines are defined as a tuple:

b Basic | Dynamic
= | -————
Line : TYPE = [# p: Vect2, % point on the line| position at time O

v: Nz_vect2 #] 7 direction vector | velocity vector

Line2D: TYPE = Line
This enables one to represent a line using a point and a direction vector
p@L) + v(L) or Lp + Lv
or using a point and a velocity vector
pL) + t v(L) or L'p +t * Lv
The following alternate field names are provided

pO (L: Line): MACRO Vect2
vel(L: Line): MACRO Vect2

p(L) 7% alternate field names
v(L)

For example
L‘p0 + t * Lfvel
This can be appreviated using the following macro:
loc(L: Line) (tt: real): MACRO Vect2 = p(L) + tt*v(L)
Two functions are provided to calculate the velocity vector for different situations:

vel_from_tm: generates velocity vector from two points and transport time
vel_from_spd: generates velocity vector from two points and speed

These are defined as follows

35

vel_from_tm(pl,p2,t): { v | p2 = pl + t*xv } = 1/t*(p2 - pl)

vel_from_spd(pl,p2,s): Vect2 = IF pl = p2 then zero
ELSE s/dist(pl,p2)*(p2-p1)

ENDIF
Other useful lemmas include
vel_from_tm_rew : LEMMA vel_from_tm(pl,p2,t) = 1/tx(p2 - pl)
vel_from_tm_eq_args : LEMMA vel_from_tm(p,p,t) = zero
vel_from_spd_lem : LEMMA pl /= p2 IMPLIES
vel_from_spd(pl,p2,ps) = vel_from_tm(pl,p2,dist(pl,p2)/ps)
vel_from_spd_norm : LEMMA pl /= p2 IMPLIES

vel_from_spd(pl,p2,s) = s*normalize(p2-pl)
Some predicates on lines are also provided:
L,L1,L2: VAR Line

on_line?(p,L): bool = EXISTS (x : real) : p = p(L) + x * v(L)

on_segment?(p,L): bool =
EXISTS (x : { y: nnreal | y <= 1}) : p = p(L) + x * v(L)

1]
o

orthogonal?(L1,L2): bool = ~(v(L1))*"(v(L2))

“(v(L1))*~ (v(L2))

parallel?(L1,L2) : bool 1 0R “(v(L1))*"(v(L2)) = -1

A.4 Intersecting Lines

The theory intersections2D provides some efficient methods for determining whether two lines
intersect or not and the point of intersection if they do so. The theory is built around a
function named cross:

cross(p, q) = Pz * @y — Gu * Py
The following simple property hold for cross:
cross(p, g) = —cross(q, p)

There are three cases for two lines L0 and L1:

intersecting: cross(L0,, L1,) # 0
parallel: cross(L0,, L1,) =0 AND cross(A, L0,) #0
same line: cross(L0,, L1,) =0 AND cross(A, L0,) =0

where A = L1, — L0,. Correspondingly, the library provides the following predicates:

36

intersect?(L0,L1): bool = cross(LO‘v,L1‘v) /=0

same_1ine?(L0,L1): bool = LET DELTA

=Li‘p - LO‘p IN
cross(LO‘v,L1¢v) =

0 AND cross(DELTA,LO‘v) =0
Given two lines that intersect the function intersect_pt returns the intersection point:

intersect_pt(LO:Line2D,L1: Line2D | cross(LO‘v,L1‘v) /= 0): Pos2D =
LET DELTA = L1‘p - LO‘p,
ss = cross(DELTA,L1‘v)/cross(LO‘v,L1¢‘v) IN
LO‘p + ss*LO‘v

Several key lemmas are provided:

intersection_lem : LEMMA cross(LO‘v,L1‘v) /= 0 IMPLIES
LET DELTA = L1‘p - LO‘p,
ss cross (DELTA,L1¢v)/cross(LO‘v,L1‘v),
tt cross (DELTA,LO‘v) /cross(LO0‘v,L1‘v)
IN
LO‘p + ss*LO0‘v = Li‘p + tt*Ll‘v

pt_intersect : LEMMA on_line?(p,LO) AND on_line?(p,L1) AND
NOT same_line?(LO,L1) IMPLIES
intersect?(L0,L1)

intersect_pt_unique : LEMMA intersect?(LO,L1) IMPLIES
pnot /= intersect_pt(LO,L1) AND
on_line?(pnot,LO)
IMPLIES
NOT on_line?(pnot,L1)

same_line_lem : LEMMA pO /= p1l AND
(on_line?(p0,L0) AND on_line?(p0O,L1) AND
on_line?(p1,L0) AND on_line?(p1,L1))
IMPLIES same_line?(LO,L1)

not_same_line : LEMMA on_line?(p,LO) AND
NOT on_line?(p,L1)
IMPLIES
NOT same_line?(LO,L1)

intersect_pt_lem : LEMMA NOT same_line?(LO,L1) AND
on_line?(pnot,L0) AND
on_line?(pnot,L1)
IMPLIES
intersect_pt(LO,L1) = pnot

37

A.5 Closest Approach

The theory closest_approach_2D provides some tools to calculate the point of closest approach
(CPA) between two points that are dynamically moving in a straight line. This is an im-
portant computation for collision detection. For example, this can be used to calculate the
time and distance of two aircaft (represented as line vectors) when they are at their closest
point.

Suppose we have two time-parametric linear equations

pt) =po +tu q(t) = g +tv

Minimum separation occurs at:

(=7
cpa — T TS5 o9
i |4 — o2

where wy = py — ¢o. The library provides a function time_closest:

time_closest(p0,q0,u,v): real =
IF norm(u-v) = O THEN J, parallel, eq speed
0
ELSE
- ((p0-q0) *(u-v))/sq(norm(u-v))
ENDIF

The following lemma gives an alternate way to calculate the function.

time_closest_lem: LEMMA norm(u-v) /= O AND
a = (u-v)*(u-v) AND
b = 2x(p0-q0) * (u-v)
IMPLIES
time_closest(p0,q0,u,v) = -b/(2*a)

The lemma time_cpa establishes that this time is indeed the point where the distance is at a
minimum.

time_cpa: LEMMA t_cpa = time_closest(p0,q0,u,v)
IMPLIES
is_minimum?(t_cpa, (LAMBDA t: sq_dist(pO+t*u,qO0+t*v)))

See
http://geometryalgorithms.com/Archive/algorithm_0106/algorithm_0106.htm

for a very nice discussion.

38

REPORT DOCUMENTATION PAGE o ApDIoved g

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existingdata sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or anyother aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |2. REPORT TYPE 3. DATES COVERED (From- To)
01- 03 - 2004 Technical Memorandum

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Formal Modeling and Analysis of a Preliminary Small Aircraft

Transportation System (SATS) Concept 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Carreno, Victor A.; Gottliebsen, Hanne; Butler, Ricky; and Kalvala, Sara

5e. TASK NUMBER

5f. WORK UNIT NUMBER

23-786-10-10
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-2199
L-18449

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
National Aeronautics and Space Administration NASA
Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)
NASA/TM-2004-212999

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

Availability: NASA CASI (301) 621-0390 Distribution: Standard

13. SUPPLEMENTARY NOTES ‘ ' ' o ‘
Carreno and Butler, Langley Research Center; Gottliebsen, National Institute of Aerospace; Kalvala, University of Warwick
An electronic version can be found at http://techreports.larc.nasa.gov/Itrs/ or http://ntrs.nasa.gov

14. ABSTRACT

New concepts for automating air traffic management functions at small non-towered airports raise serious safety issues
associated with the software implementations and their underlying key algorithms. The criticality of such software systems
necessitates that strong guarantees of the safety be developed for them. In this paper we present a formal method for modeling
and verifying such systems using the PVS theorem proving system. The method is demonstrated on a preliminary concept of
operation for the Small Aircraft Transportation System (SATS) project at NASA Langley.

15. SUBJECT TERMS
Safety; Software; Formal methods; Verification; Air traffic management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF . .
a. REPORT |b. ABSTRACT |c. THIS PAGE PAGES STI Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (/nc/ude area code)
U U U Uuu 44 (301) 621-0390

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

